Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. Importance of pollinators in changing landscapes for world crops. Proc R Soc B. 2007;274:303–13.
Aouar-Sadli M, Louadi K, Doumandji SE. Pollination of the broad bean (Vicia faba L. var. Major) (Fabaceae) by wild bees and honey bees (Hymenoptera: Apoidea) and its impact on the seed production in the Tizi-Ouzou area (Algeria). Afr J Agric Res. 2008;3(4):266–72.
Card SD, Pearson MN, Clover GRG. Plant pathogens transmitted by pollen. Australas Plant Pathol. 2007;36:455–61.
Cobos A, Montes N, López-Herranz M, Gil-Valle M, Pagán I. Within-host multiplication and speed of colonization as infection traits associated with plant virus vertical transmission. J Virol. 2019;93:e01078-e1119.
Davis RF, Hampton RO. Cucumber mosaic virus isolates seedborne in Phaseolus vulgaris: serology, host-pathogen relationships, and seed transmission. Phytopathol. 1986;76:999–1004.
Dombrovsky A, Smith E. Seed transmission of Tobamoviruses: Aspects of global disease distribution. Adv Seed Biol. 2017;12:233–60.
Domier LL, Hobbs HA, McCoppin NK, Bowen CR, Steinlage TA, Chang S, et al. Multiple loci condition seed transmission of Soyabean mosaic virus (SMV) and SMV-induced seed coat mottling in soyabean. Phytopathol. 2011;101:750–6.
Elisante F, Ndakidemi P, Arnold SEJ, Belmain SR, Gurr GM, Darbyshire I, Xie G, Stevenson PC. Insect pollination is important in a smallholder bean farming system. PeerJ. 2020;8:e10102.
Fetters AM, Cantalupo PG, Wei N, et al. The pollen virome of wild plants and its association with variation in floral traits and land use. Nat Commun. 2022;13:523.
Fetters AM, Ashman TL. The pollen virome: a review of pollen-associated viruses and consequences for plants and their interactions with pollinators. Am J Bot. 2023;110:e16144.
Franceschinelli EV, Ribeiro PLM, Mesquita-Neto JN, Bergamini LL, Madureira de Assis I, Elias MAS, Fernandes PM, Carvalheiro LG. Importance of biotic pollination varies across common bean cultivars. J Appl Entomol. 2022;146:32–43.
Groen SC, Jiang S, Murphy AM, Cunniffe NJ, Westwood JH, Davey MP, et al. Virus infection of plants alters pollinator preference: a payback for susceptible hosts? PLoS Pathog. 2016;12(8):e1005790. https://doi.org/10.1371/journal.ppat.1005790.
Hamelin FM, Allen LJS, Prendeville HR, Hajimorad MR, Jeger MJ. The evolution of plant virus transmission pathways. J Theor Biol. 2016;396:75–89.
Hildesheim LS, Opedal ØH, Armbruster WS, Pélabon C. Quantitative and qualitative consequences of reduced pollen loads in a mixed-mating plant. Ecol Evol. 2019;9(24):14253–60.
Hull R. Plant virology. 5th ed. London: Academic Press; 2014.
Hoffmann G, Incarbone M. A resilient bunch: stem cell antiviral immunity in plants. New Phytol. 2024;241:1415–20. https://doi.org/10.1111/nph.19456.
Jones RAC. Plant virus emergence and evolution: Origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. Virus Res. 2009;141:113–30. https://doi.org/10.1016/j.virusres.2008.07.028.
Kyrychenko A, Hrynchuk K, Antipov I, Likhanov A. Bean Common Mosaic Virus Transmission by Bean Seed cv. Chervona Shapochka. In: Tiwari AJ, editor. Advances in Seed Production and Management. 2020. https://doi.org/10.1007/978-981-15-4198-8_29.
Mandahar CL. Virus transmission through seed and pollen. In: Maramorosch K, Harris KF, editors. Plant Diseases and Vectors: Ecology and Epidemiology Chapter 8, Academic Press. 1981. ISBN 9780124702400.
Medina AC, Grogan RG. Seed transmission of bean common mosaic viruses. Phytopathol. 1961;51:452–6.
Mhlanga NM, Murphy AM, Wamonje FO, Cunniffe NJ, Caulfield JC, Glover BJ, Carr JP. An innate preference of bumblebees for volatile organic compounds emitted by Phaseolus vulgaris plants infected with three different viruses. Front Ecol Evol. 2021;9:626851. https://doi.org/10.3389/fevo.2021.626851.
Morales FJ. Common beans. In: Loebenstein G, Carr JP, editors. Natural resistance mechanisms of plants to viruses. The Netherlands: Springer; 2006. p. 367–82.
Murphy AM, Jiang S, Elderfield JAD, Pate AE, Halliwell C, Glover BJ, Cunniffe NJ, Carr JP. Biased pollen transfer by bumblebees favors the paternity of virus-infected plants in cross-pollination. iScience. 2023;26(3):106116. https://doi.org/10.1016/j.isci.2023.106116.
Ojiewo C, Monyo E, Desmae H, Boukar O, Mukankusi-Mugisha C, Thudi M, et al. Genomics, genetics and breeding of tropical legumes for better livelihoods of smallholder farmers. Plant Breed. 2019;138:487–99. https://doi.org/10.1111/pbr.12554.
Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos. 2011;120:321–6.
Pagán I. Movement between plants: Vertical transmission. In: Palukaitis P, García-Arenal F, editors. Cucumber Mosaic Virus. Washington: APS Press; 2019. p. 185–98.
Pagán I. Transmission through seeds: The unknown life of plant viruses. PLoS Pathog. 2022;18:e1010707. https://doi.org/10.1371/journal.ppat.1010707.
Sastry KS. Seed-borne plant virus diseases. India New Delhi: Springer; 2013.
Schippers B. Transmission of bean common mosaic virus by seed of Phaseolus vulgaris L. cultivar Beka. Acta Bot Neerlandica. 1963;12:433–97.
Simmons HE, Munkvold GP. Seed transmission in the Potyviridae. In: Gullino ML, Munkvold GP, editors. Global perspectives on the health of seeds and plant propagation material. Dordrecht: Springer; 2014. p. 3–15.
Thompson JR, Langenhan JL, Fuchs M, Perry KL. Genotyping of Cucumber mosaic virus isolates in western New York State during epidemic years: Characterization of an emergent plant virus population. Virus Res. 2015;210:169–77.
Wainaina JM, Kubatko L, Harvey J, Ateka E, Makori T, Karanja D, Boykin LM, Kehoe MA. Evolutionary insights of Bean common mosaic necrosis virus and Cowpea aphid-borne mosaic virus. PeerJ. 2019;7:e6297. https://doi.org/10.7717/peerj.6297.
Wamonje FO, Donnelly R, Tungadi TD, Murphy AM, Pate AE, Woodcock C, et al. Different plant viruses induce changes in feeding behaviour of specialist and generalist aphids on common bean that are likely to enhance virus transmission. Front Plant Sci. 2020;10:1811. https://doi.org/10.3389/fpls.2019.01811.
Wang D, Maule AJ. A model for seed transmission of a plant virus: genetic and structural analysis of pea embryo invasion by Pea seed-borne mosaic virus. Plant Cell. 1994;6:777–87.
Worrall EA, Wamonje FO, Mukeshimana G, Harvey JJW, Carr JP, Mitter N. Bean common mosaic virus and bean common mosaic necrosis virus: relationships, biology, and prospects for control. Adv Virus Res. 2015;93:1–46.